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1. INTRODUCTION

Let h be the Hausdorff metric on the space B(X) of all nonempty
bounded closed subsets of a normed linear space X. We recall that

h(A, B) = max{sup dist(a, B), sup dist(b, A)}
aEA bEB

for any A, BE B(X), where

dist(a, B) = inf Iia - bll.
bEB

Denote by B,,)X) the metric space of all sequences {Cn} of subsets
CnE B(X) such that the union UCn is a bounded subset of X, endowed
with the metric

C = {Cn}, D = {Dn} E Boo (X).
n

For any sequence C = {Cn} E Boo(X), define the functional Ie on X by the
formula

Idx) = lim sup sup Ilx-zll.
n --+ 00 Z E en

(1.1 )

If Mis' a nonempty closed convex subset of X, then an element Xc EM
such that

(1.2 )

is called the asymptotic Chebyshev center of the sequence C = { Cn} E Boo (X)
with respect to M. The set (perhaps empty) of all such elements Xc is
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denoted by PM( C). Note that the notion of asymptotic Chebyshev center
Xc includes the following fundamental notions from theories of approxima­
tion and fixed points:

(i) the best approximation Xc in M to an element Z E X, in the case
when Cn = Z for every n;

(ii) the Chebyshev center Xc of a set A E B(X), whenever M = X and
Cn = A for all n [1,8];

(iii) the relative center Xc of a set A E B(X) with respect to M, if
Cn = A for every n [3, 7];

(iv) the asymptotic center Xc of a bounded sequence {xn} in M,
whenever C n = X n for all n [6,9];

(v) the asymptotic center Xc lor a net C={Cn}EBoo(X), where
Cn::::JCn+ 1 for all n [2,10,11].

In this paper we study properties of the set-valued map

PM: B oo (X):3 C --+ PM(C) E M (") B(X).

More precisely, in Section 2 we establish a few basic properties of the func­
tionals Ie and then show that asymptotic Chebyshev centers exist in a
reflexive Banach space. The main result of this paper is the estimate for
Ilxc-xDII presented in Proposition 3.1 from Section 3. As immediate
corollaries of this proposition, we deduce uniqueness of asymptotic
Chebyshev centers and a fixed-point theorem for Banach spaces that are
uniformly convex in every direction. Finally, we show that the map PM is
uniformly and Holder continuous on bounded subsets of Boo (X) in the case
when the Banach space X is uniformly convex and q-convex, respectively.
It should be noticed that our results extend the well-known results due to
Garkavi [8], Amir [1], and Day et al. [5] for Chebyshev centers.

2. EXISTENCE OF ASYMPTOTIC CHEBYSHEV CENTERS

For any nonempty bounded subsets A and B of X, we define

p(A, B) = inf sup Ilx - zll.
xeA zeB

The closed convex hull of A will be denoted by co(A). Now we establish
a few properties of the functionals Ie: Boo(X) --+ [0, 00) and the asymptotic
Chebyshev centers Xc defined by formulae (1.1), (1.2), which will be used
throughout the paper.
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LEMMA 2.1. For any C= {Cn} and D= {Dn} in Boo(X) the following
statements are satisfied:

(a) fc is a nonnegative convex functional.

(b) Ifdx)-fdy)1 ~ Ilx- yll for all x, y in X.

(c) fdx) --+ 00 as Ilxll--+ 00.

(d) Ifdx)- fD(X)1 ~H(C, D) for every x in X.

(e) fc=fG' where G= {co(Cn )} eBoo(X).

(f) fdx D)~ H(C, D) + p(M, E), where E= UDn-

Proof We shall omit the straightforward proofs of (a)-(e). For (f), we
apply (d) to get

fdx D)~ IfdxD) - fD(X D)! + fD(X D)~ H(C, D) + fD(X D).

This in conjunction with the fact that

fD(X D) ~ inf lim sup sup Ilx - zll = p(M, E).
xeM n-.oo zeE

completes the proof. I
In view of the first three statements (a)-(c) given in Lemma 2.1, we can

apply Theorem 5.1.3 [14, p. 138] in order to show that the functional fc
attains its minimum Xc on any nonempty closed and convex subset M of
a reflexive Banach space X. In other words, we have

THEOREM 2.1. Let M be a nonempty closed convex subset of a reflexive
Banach space X. Then there exists an asymptotic Chebyshev center Xc of
each element C eBoo(X) with respect to M.

On the other hand, if the space X is not reflexive then there exist a non­
empty closed convex subset M of X and an element CeBoo(X) such that
the set P M( C) of asymptotic Chebyshev centers is empty. This is a direct
consequence of Corollary 2.4 [17, p. 99] and remark (i) from Section 1.

3. UNIFORM CONTINUITY OF THE MAP PM

Following Amir [1] we define the modulus of convexity
(jN: [0,2] --+ [0, 1] of a normed space X with respect to its subspace
N #- {o} by the formula

(jN(e) = inf {1-IIX; YII: x, yeX, Ilxll = Ilyll = 1, Ilx- yll =e, x- yeN}.
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Note that if N = X, then ~ x is the classical modulus of convexity of X. In
the definition of (j N(e) we can as well take the infimum over all elements
x, y E X with Ilxll, II yll :::; 1, Ilx - yll ~ e, and x - yEN. In particular, this
implies that

II x; y II :::; r[1- (j N (IIX ~ YII) ] (3.1 )

for all x, y E X and r > 0, whenever Ilxll, II yll :::; r and x - yEN. Moreover,
we have

(3.2)

whenever °< IJ :::; e :::; 2. In order to verify this inequality and the former
statement we can repeat mutatis mutandis the proofs given in [12, pp.60
and 66 (Lemma 1.e.8)] for the case N = X.

PROPOSITION 3.1. If xc, XD E M are asymptotic Chebyshev centers of
C, DE Boo(X) with respect to a nonempty closed convex subset M of a
normed space X then the inequality

r(jN exc~XDII):::;H(C, D)

holds for all positive rand subspaces N of X such that

r~ max{Jdxc),fD(xD)} + H(C, D) and

Proof Without loss of generality we may suppose that

r:t. c = fdxd ~ fD(xD) = r:t. D·

By (1.1), (1.2) we conclude that, for each positive e, there exists an integer
k(e) such that

r:t.c~ sup Ilxc-zll-s
ZECn

and r:t.D~ sup IlxD-zll-s,
zE D"

(3.3 )

whenever n ~ k(e). Moreover, using the convexity of M we get

. (XC+x D) Ilxc+xD IIr:t. c = mf fdx):::;fc :::;sup z +e
XEM 2 ZEC. 2

for infinitely many n ~ k(e). Therefore, for these n there exist points
zn,£ E Cn such that

(3.4 )

640/59/3-4
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Clearly, by (3.3) we have
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(3.5)

(3.7)

Next, in view of the definition of distance, one can choose points i n•e in Dn

for which

Hence by (3.3) we obtain

IlxD-zn.ell"'; IlxD-in.ell + lIin.e-zn,ell

",; sup IlxD-zll +dist(zn,e> Dn)+e
ZE D n

ZE D n

",; IX D+ h(Cn, Dn)+ 2e",; IXc + H( C, D) + 2e. (3.6)

Now, let N be a subspace of X which includes the element Xc - XD' Then
applying (3.4) and (3.1) we get

IX c _ 2e",; II (xc - Zn,e); (x D- zn,J II

"';s [l-b N exc~XDII)1
where s is a positive number such that

s ~ max{ Ilxc - zn,ell, Ilx D - zn.ell}.

On the other hand, by (3.5), (3.6) we have

max{ Ilxc - Zn.e II, IlxD- zn.ell} ",; IXc + H(C, D) +2e"'; r + 2e

for any positive r defined as in the proposition. Hence inequalities (3.2) and
(3.7) with s := IX c + H( C, D) + 2e yield

(r +2e) bN (1IX;:~DII)",;s bN (1Ixc~ XDII )

",; IX c + H( C, D) + 2e -lX c + 2e = H( C, D) + 4e.

Since e > 0 is arbitrary, we can pass to the limit e -+ 0 in order to get the
desired inequality. I
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This proposItIon can be easily used to establish the uniqueness of
asymptotic Chebyshev centers. For this purpose, we recall [8] that a space
X is uniformly convex in every direction if 0N(6) > 0 for all one-dimensional
subspaces N of X and 0 < B::;;; 2. Note that every separable Banach space
can be equivalently renormed to be uniformly convex in every direction
[20].

THEOREM 3.1. Let M be a nonempty closed convex subset of a uniformly
convex, in every direction, space X. Then there exists at most one asymptotic
Chebyshev center Xc of any element C E Boo (X) with respect to M.

Proof Suppose that xC, XDEPM(C) and XC=FXD' Then by Proposi­
tion 3.1 we have

for N =span{x c - XD} and sufficiently large r> O. Hence X is not
uniformly convex in the direction Xc - XD' I

It should be noticed that Theorem 3.1 was proved by Garkavi [8] for
Chebyshev centers and by Day et al. [5, Theorem 5] for a class of relative
Chebyshev centers. Moreover, by Garkavi's theorem [8, Theorem 6] and
remark (ii) from Section 1 it follows that Theorem 3.1 is no longer true for
normed spaces X which are not uniformly convex in every direction. It is
interesting that the above results can be readily applied to prove a fixed­
point theorem for a nonexpansive selfmap of M, i.e., a map T: M -+ M
such that

IITx- Tyll::;;; Ilx- yll

for all x, y in M. More precisely, let F( T) be the fixed-point set of T defined
by

F(T) = {XE M: Tx =x}.

Moreover, denote by A(T) the asymptotic center set of Tin M which con­
sists of asymptotic (Chebyshev) centers Xc E M of all bounded sequences
C = {Cn} with respect to M, where Cn= Tnz (n = 0, 1, ... ) and z is an
arbitrary element of M. Then the following theorem holds (cf. [9,
Theorem 5.1, p.22]), in which the existence part is essentially due to
Zizler [20].

THEOREM 3.2. Let T be a nonexpansive selfmap of a nonempty bounded
closed convex subset M of a uniformly convex in every direction reflexive
Banach space X. Then it has a fixed point and F( T) = A (T).
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Proof By Theorems 2.1 and 3.1 there exists the unique asymptotic
center Xc EM of C = {Tnz} with respect to M, where z is an arbitrary fixed
element of M. Since

for all n ~ 1, we obtain fdTxd ~fdxd after passing to the limit superior
with n .... 00. Hence by the uniqueness of Xc we get Tx c = Xc' Thus
0#A(T)cF(T). Conversely, if zEF(T) then Cn:=Tnz=z for all n.
Consequently, we have fdx) = Ilx-zll, and so z=xcEA(T). I

Clearly, if a Banach space X is uniformly convex (Le., if <5AE»O for
0< E~ 2) then Theorems 2.1-3.2 and Proposition 2.1 with N = X are true.
However, in this case one can prove additionally the following theorem
which has been proved by Amir [1] for Chebyshev centers.

THEOREM 3.3. Let M be a nonempty closed convex subset of a uniformly
convex Banach space X. Then the single-valued map PM: Boo (X) -+ M is
uniformly continuous on every bounded subset of the metric space Boo(X).

Proof A uniformly convex space is reflexive and uniformly convex in
every direction. Thus Theorems 2.1 and 3.1 imply that the set
PM(C)={xd is singleton for every C={Cn}EBoo(X). Now, if Y is a
bounded subset of Boo(X) then

K:= c~~~y [max {p (M, Ucn ). P ( M, UDn )} + H(C, D)J < 00. (3.8)

Moreover, by Lemma 2.1 (f) we have

for all C, D in Y. This in conjunction with Proposition 3.1 yields

for all C, D in Y. Since the modulus of convexity of X is an increasing con­
tinuous function and <5 x(O) = 0, it follows that the modulus of continuity
w y( PM; E) of map PM Iy satisfies the estimate

Thus W y(PM; E) .... °as E -+ 0, which completes the proof. I
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Finally, by the Amir theorem [1, Theorem 5] it follows that Theorem
3.3 is false for some nonempty bounded closed convex subset in each
Banach space which is not uniformly convex.

4. HOLDER CONTINUITY OF PM

We first recall that a normed space X is said to be q-convex for some
q?: 2 [16] if there exists a constant d> 0 such that

(4.1 )

for all x, y in X Clearly, a q-convex space X is uniformly convex. On the
other hand, by the Pisier theorem [15] it follows that each super-reflexive
(in particular, uniformly convex) Banach space X can be equivalently
renormed to be q-convex for some q ?: 2. Next, in view of the Clarkson and
Meir inequalities (see [4, Theorem 2] and [13, Inequality 2.3]), the spaces
L p (1 < p < 00) are q-convex with q = max(2, p) and the constant d is
equal to

d= {P(P-1)/4,
21 - p ,

if 1 < p ~ 2,
if p?: 2.

The same results hold also for the Sobolew and Hardy spaces [18, 19]. For
such spaces the functional f c defined by (1.1) has the following nice
property.

LEMMA 4.1. If X is a q-convex space for some q?: 2 and Xc is an
asymptotic Chebyshew center of C E Boo(X) with respect to a closed convex
subset M of X, then the inequality

holds for all x in M.

Proof Since M is a convex set, it follows from (1.2) that

for all x in M. This in conjunction with (4.1) yields
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n_oo ZECn

~ !([fC(XC)]q + [fdx)]q - d Ilxc- xll q
),

which completes the proof. I
This lemma can be applied to show Holder continuity with exponent 1/q

of the map PM'

THEOREM 4.1. Let M be a nonempty closed convex subset of a q-convex
Banach space X, and let Y be a bounded subset of the metric space Boo(X).
Then the single-valued map PM: Boo(X) ~ M satisfies the Holder condition

liPM( C) - PM(D)II ::::;; (q/d)l/q K1-1/q(H( C, D))l/q

for all C, D in Y, where the positive constant K is defined as in (3.8).

Proof By Theorems 2.1 and 3.1 the set PM( C) is a singleton Xc EM for
every C E Boo(X). Applying Lemma 4.1 twice we obtain

d Ilxc- xDll q
~ !([fc(xD)]q - [fD(XD)]q) + ~([fD(xdY - [fdxd]q)

for all C, D in Y. Next, we use the well-known inequality

o~ t, s~r,

and Lemma 2.l(d) in order to get the inequality

d Ilxc- xDllq ~ !qrq-1(lfdxD)- fD(xD)1 + IfD(xd - fdxdl)

::::;; qrq - 1H( C, D)

with r := max {fdxD),fD(xd }. Finally, in view of Lemma 2.1 (f) and (3.8)
we have r = r( C, D) ::::;; K for all C, D in Y. I
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